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ABSTRACT

A resonant and a non-resonant photoacoustic detector were used to determine

thermal diffusivities of gases. With a non-resonant detector thermal diffusivities

can be determined in a wide range between 1.0×10−3 m2s−1 and 1.0×10−7 m2s−1,

whereas experiments with the resonant detector deliver thermal diffusivities in a

range that is about a factor of 100 smaller.

As refrigerants – HFC, HCFC and hydrocarbons – are absorbants in the infrared

at a wavelength of 3.39µm, their thermal diffusivity can be determined without the

addition of a trace gas, particularly at pressures below 0.01 MPa. At pressures above

0.1 MPa the addition of ammonia as a trace gas is recommended. The absorption

wavelength is then 1.531µm.

A simulation model for the non-resonant photoacoustic detector is presented

for the design of a detector and for an extended error analysis.
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1. INTRODUCTION

Transport properties such as thermal conductivity and viscosity are essential

quantities for heat exchanger design, and heat transfer coefficients for these appa-

ratus are usually determined from correlations containing these properties.

This paper focuses on measurements of the thermal conductivity of gases at

moderate pressures of 0.01 MPa to 1.0 MPa. As is well known, the temperature-

dependent thermal conductivity λ0 of the dilute gas is of prime importance for the

presentation of thermal conductivities with the aid of the residual concept [1], [2].

There exist a variety of methods to measure thermal conductivities. The most

often applied technique is the transient hot wire method [3], [4]. Results with this

method, however, become inaccurate at pressures below 0.01 MPa. Other well es-

tablished methods, such as steady-state measurements with a concentric-cylinder

apparatus [5] are also not applicable in the range of pressures below 0.2 MPa. In

contrast the dynamic light scattering method [6] is appropriate for thermal diffu-

sivity measurements at high pressures, where densities are above 100 kg m−3. An

appropriate method to measure thermal diffusivities at moderate pressures is the

photoacoustic technique. As shown in experiments with argon as a reference fluid,

the uncertainty is below ± 1 % [7]. The measured thermal diffusivity a = λ/(ρcv)

can be converted into the thermal conductivity with the aid of an equation of state

for density ρ and isochoric heat capacity cv.

The photoacoustic method is based on the conversion of radiation energy into

an acoustic signal. In the experiments a periodically modulated laser penetrates

the sample chamber — a cylindrical cell charged with the test fluid. A small part

of the radiation energy is absorbed by an absorbant added to the test gas. This

absorbant is added as a trace gas in small amounts in the order of some ppm, so

that the thermophysical properties of the test gas are not affected. The trace gas

should be a strong absorbent at the emission wavelength of the laser, so that the

energy transfer between the trace gas and the test gas inside the cell provokes a



small rise in temperature of some mK and a pressure rise of about 1 Pa. As the

laser beam is modulated periodically and the wall temperature of the sample cell is

held constant, temperature and pressure will alternate, as well. Thus an acoustic

signal, Fig. 1, is generated. It can be detected by a sensitive microphone and the

thermal diffusivity of the sample gas can be determined from the time-dependent

pressure rise.

Fig. 2 shows a schematic sketch of the experimental setup. A detailed descrip-

tion of the electric instrumentation is given elsewhere [8]. The sample chamber

consists of a stainless steel tube of 1.5 mm inner diameter and 103 mm length. It

is shrunk into a copper cylinder, so that a good thermal contact is attained. The

copper cylinder itself is part of a thermostat keeping the wall of the sample cham-

ber constant within ± 1 mK. The microphone can either be mounted next to the

sample chamber or, as shown in Fig. 2, outside the insulation. In the first case a

temperature-resistant microphone is needed. Of advantage is that the photoacous-

tic detector is non-resonant. When the microphone is placed outside the insulation,

the sample chamber, the coupling tube and the microphone act as an acoustic res-

onator, and provoke damped harmonic oscillations.

Both – the non-resonant and the resonant photoacoustic detector – are stud-

ied in the next sections. The advantages and disadvantages of each design as well

as their measuring ranges are discussed. As will be shown, with refrigerants the

pressure range can be extended when measurements are carried out at different

wavelengths.

2. THE NON-RESONANT PHOTOACOUSTIC DETECTOR

The temperature rise in a non-resonant photoacoustic detector is obtained from

the equation of heat diffusion in an infinite cylinder

ρcv
∂T

∂t
= λ

∂2T

∂r2
+
λ

r

∂T

∂r
+A(r, z) (1)



with the temperature T , time t, thermal conductivity λ, the radial coordinate in

the sample chamber r and the axial coordinate z. The heat generation A depends

on the intensity I(r, z) and is given for an absorptivity below α = 0.3 m−1 by a

linear relationship

A(r, z) = αI(r, z). (2)

The intensity I(r, z) of an ideal Gaussian laser beam is given by

I(r, z) =
W

πw(z)2
exp

(
−

r2

w(z)2

)
, (3)

where W denotes the radiative power of the laser and w(z) is defined as the radius

where the beam intensity reaches of 1/e of its peak value. The coordinate z has its

origin in the beam focus. As shown by the experiments [8] the axial profile of the

beam radius w(z) can be approximated by

w(z) = w0(1 + C∗)1/2, (4)

wherein the constants w0 and C∗ are determined from measurements of the in-

tensity distribution of the beam at various locations inside the sample chamber

with the aid of a beam-scanner. The boundary conditions are constant wall tem-

perature T (t, r = R, z) = Tw, and rotation symmetry of the coordinate system

(∂T/∂r)t,r=0 = 0.

Fig. 1 shows the pressure generated by means of a periodically modulated laser

beam. It becomes obvious that the pressure towards the end of a light phase has

not reached its asymptotic end value, where all radiation energy absorbed by the

fluid is transferred to the wall of the sample chamber. The temperature field for a

given period principally depends on the end temperatures of the previous periods.

After a certain number K of periods, however, the temperature fields of successive

periods become identical. When such a steady periodic state is reached the tem-

perature field is taken as initial condition for the solution of the energy equation.

The number of these periods depends on the modulation frequency and the thermal

diffusivity of the the gas. As an example, we obtain K=3 for argon at T=304 K,



p=0.1015 MPa and a modulation frequency of 43 Hz.

From the local temperature rise ∆T (t, r, z) = T (t, r, z)− Tw the average tem-

perature rise ∆T (t) is obtained

∆T (t) =
1

V

V∫
0

∆T (t, r, z)dV (5)

where V is the volume of the sample chamber. Temperature and pressure are related

through the equation of state T (p, v), with constant specific volume v = const in

our case. A Taylor series expansion yields

∆T (t) = T − T0 =

(
∂T

∂p

)
p0,T0

·∆p(t) + ... (6)

∆T (t→∞) = ∆T∞ =

(
∂T

∂p

)
p0,T0

·∆p∞ + ... . (7)

Neglecting terms of higher than first order, due to the small pressure changes, we

obtain proportionality between the average temperature rise and the pressure rise

∆T (t)

∆T∞
=

∆p(t)

∆p∞
. (8)

With Eqn. (8) and the expression for ∆T (t) obtained from the analytical solution

of the energy equation [7], the pressure rise is

∆p(t) = ∆p∞

{
1 +

∞∑
m=1

Kmexp

(
−
ζ2
mat

R2

)

×

[
1−

K∑
k=1

{
exp

(
−
ζ2
ma (2k − 1)

2R2fch

)
−exp

(
−
ζ2
ma k

R2fch

)}]}
.

(9)

At the beginning of a given light phase the time is set t=0, and K is the number

of previous periods. fch is the modulation frequency of the laser beam, and ζm are

the zeros of the Bessel function of zero order. Km are coefficients, dependent on

the beam parameters w0 and C∗, Eqn. (4).

As follows from Eqn. (9) the radius of the sample chamber should be kept as

small as possible, because with increasing radius the pressure rise d∆p/dt decreases.

As a consequence it takes more time to register the pressure rise of a light phase.

This time, however, is limited by the lower cut-off frequency of the microphone. A



sample chamber with an inner diameter of 1.5 mm and a microphone with a lower

cut-off frequency of 0.1 Hz permit measurements down to a = 1.0×10−7 m2s−1. The

maximum modulation frequency of the laser light of 200 Hz limits the measuring

range to thermal diffusivities below a = 1.0× 10−3 m2s−1.

One the other hand the microphone of (1/2)” diameter is mounted next to the

tube of 1.5 mm diameter, whereby a clearance volume in front of the microphone

cannot be avoided entirely. Moreover, microphones are equipped with a capillary

tube that equalizes the static pressure on both sides of the microphone membrane.

This capillary tube is designed in such a way that the acoustic pressure is not

influenced for sample volumes above 2000 mm3. In our case the volume of the

sample chamber is 170 mm3. Both – the clearance volume and the mass flow in the

capillary tube of the microphone – provoke changes of the density in the sample

chamber during the pressure rise so that the assumption of a constant density in

the Taylor series expansion, Eqns. (6) and (7), no longer holds. In order to study

the influence on the the pressure rise, the mass and the energy balances were solved

simultaneously, for the system according to Fig. 3. For an ideal gas, the energy

equation in system 1 reads

ρcv
∂T1

∂t
−
RT1

V1

dm1

dt
= λ

∂2T1

∂r2
+
λ

r

∂T1

∂r
+A(r) (10)

where R denotes the specific gas constant. The average temperature is

T 1(t) =
1

V

V∫
0

T1(t, r)dV. (11)

The gas velocities ω in the throttles are obtained from the Bernoulli-equation

1

2
ω2 +

p2∫
p1

1

ρ
dp +

1

2
ω2 L

D
f = 0, (12)

where L is the tube length, D the diameter and f the friction factor, which is for

laminar flow f = 64/Re. Neglecting the compressibility of the gas and the friction

in the boring, in Eqn. (12), the mass balance of system 1 yields

dm1

dt
= −π

D2
1

4
ρω = −π

D2
1

4

√
2ρ(p1 − p2) = −π

D2
1

4

√√√√2ρR

(
m1T 1

V1

−
m2T 2

V2

)
. (13)



Under adiabatic conditions the energy and mass balances for system 2 and 3 are

cvm2
dT 2

dt
− (cv +R)

(
T 2 − T 1

) dm1

dt
−RT 2

dm2

dt
= 0, (14)

dm2

dt
= −

dm1

dt
−
dm3

dt
, (15)

cvm3
dT 3

dt
−RT 3

dm3

dt
= 0, (16)

dm3

dt
= π

D2
3

4
ρω = −8πρνL +

√√√√64π2ρ2ν2L2 +
π2ρD4R

8

(
m2T 2

V2
−
m3T 3

V3

)
, (17)

where ν denotes the kinematic viscosity of the gas. The initial conditions are

T1 (t=0,r) = Tw, mi (t=0) = p0Vi/(RTw) and T i (t=0) = Tw. As a result of a numerical

solution of the differential equations (10) to (16) the state variables T1(r, t), T 1(t),

T 2(t), T 3(t), m1(t), m2(t) and m3(t) are obtained. The pressure is then obtained

with the aid of the equation of state for ideal gases. The microphone signal S is

S = kmka(p2 − p3) (18)

with the amplification factor of the microphone km, and ka of the amplifier. These

values are tabulated in the calibration charts of the manufacturer.

The solid curve in Fig. 4 refers to the measured photoacoustic signal for argon

at T=304 K and p=0.1015 MPa with 1000 ppm ethane as a trace component.

The volumes of the sample chambers were V1 = 177 mm3, V2 = 543 mm3, V3 =

334 mm3, the absorptivity is α = 0.17 m−1 and the laser power is W=5 mW. The

heat generation according to Eqn. (3) was determined for an average beam radius

of w = 0.257mm. The dash-dotted curve is the result of the simulation. It agrees

well with the experiments. Between 0 s and 0.018 s a considerable high mass flow

from system 1 to system 2 and from system 2 to 3 provokes a density decrease in the

sample chamber so that the pressure rise is lower than that according to Eqn. (9)

for constant density, dashed curve. The pressure decrease after 0.018 s is caused

by the mass flow in the capillary tube of the microphone. This mass flow is almost

constant.

As the results clearly indicate, the clearance volume in front of the microphone



membrane has to be kept as small as possible. It should be lower than 10 % of the

volume of the sample chamber. Additional flow resistances between both sides of

the membrane are useful to reduce the mass flow inside the microphone.

3. THE RESONANT PHOTOACOUSTIC DETECTOR

Fig. 2 shows the setup of an resonant photoacoustic detector. The sample

chamber, the microphone chamber and the coupling tube form an acoustic resonator

a so-called Helmholtz resonator. The gas in the coupling tube behaves as if it

were moved as a plunger towards one chamber and thus compresses the gas there,

whereas the gas in the other chamber expands. The pressure difference between

both chambers provoke a counter-acting force accelerating the plunger in the inverse

direction. The oscillation thus generated is damped due to the friction of the wall.

The damping factor δ and the angular frequency ω of the oscillations are [7]

δ = −
8πη

Aρ
ω =

√
Av2

s

LRV2
−

16π2η2

A2ρ2
(19)

where vs is the velocity of the sound, η the viscosity, A the cross-section and LR

the length of the coupling tube.

By means of a resonant detector, reference measurements with argon lead to an

uncertainity below ± 1%, although the clearance volume in front of the microphone

is greater than that of the non-resonant cell. As in the case of harmonic oscillations,

the mass flows are oscillating too, but the time averaged density in the chamber

remains constant. The pressure rise can be understood as a superposition of the

pressure rise according to Eqn. (9) and damped harmonic oscillations. Therefore

the dashed curve, Fig. 5, referring to the pressure rise according to Eqn. (9) inter-

sects the measured curve in its inflection points.

A serious disadvantage of the resonant detector is, that accurate results are

obtained only when the harmonic oscillations are not too intensively damped, oth-

erwise density changes in the sample chamber and errors become intolerable.



4. SUITABLE TRACE GASES

Previous experiments were made with argon as a test gas [7], [8] with a helium-neon

laser at a wavelength of 3.39 µm, corresponding to a wave number of 2950 cm−1.

Around this wavelength the infrared spectra of hydrocarbons and refrigerants have

strong absorption bands caused by transitions to a higher vibrational level of the

C-H bond. A trace gas therefore is not needed. The pressure range, however, is

limited to pressures below 0.01 MPa. Otherwise the absorbed radiation energy is too

high. If the absorbed energy is above 5% of the incoming energy, axial temperature

gradients cannot be neglected and thus Eqn. (9) is no longer valid. Hydrocarbons,

in general, do not absorb at a wavelength of 1.531 µm, where ammonia has a

local absorption maximum with a line strength of S = 1.85 × 10−21 cm/molecule

at T=293 K. Assuming a Lorentz profile and a line width of ν = 0.1 cm−1 it is

recommended to fill in ammonia with a partial pressure of at least 300 Pa in order

to achieve a sufficient high absorptivity coefficient of about 0.09 m−1. This value

leads to a photoacoustic signal, high enough, so that measurements can be carried

out at pressures above 0.1 MPa without affecting the thermophysical properties of

the test gas. In the intermittent pressure range between 0.01 MPa and 0.1 MPa,

the ammonia added to the test gas change the thermal diffusivity, the density and

the isochoric heat capacity. The errors thus introduced must be corrected.

5. CONCLUSIONS

A non-resonant photoacoustic detector is an efficient measurement technique for

precise measurements of thermal diffusivities in the range between 1.0×10−3 m2s−1

and 1.0× 10−7 m2s−1. Such a non-resonant cell should be preferred because mea-

surements can be performed in a range of thermal diffusivities that is almost a

factor of 100 wider than the range that can be obtained with the resonant cell.

Measurements with refrigerants at pressures below 0.01 MPa can be carried out



with a helium-neon laser at an emission wavelength of 3.39 µm. As the refrigerants

show strong absorption bands around this wavelength, a trace gas is not needed.

In this pressure range the refrigerants can be considered as ideal gases so that the

measured thermal diffusivities can be easily converted into thermal conductivities.

Above 0.1 MPa the thermal diffusivity of refrigerants can be measured, when am-

monia is added as a trace gas.

As the model clearly indicates, the clearance volume in front of the microphone

should be kept below 10 % of the volume of the sample chamber. Due to the small

volume of the sample chamber, the mass flow in the capillary tube connecting both

sides of the membrane, should be reduced.
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